
Signals and Systems
Convolution



The Unit Impulse

A discrete impulse signal is composed of all zero samples, except a single non-zero 
sample.

A discrete unit impulse signal is composed of all zero samples except for a single 
sample at the origin which has a value of one.

The discrete unit impulse signal is usually denoted by 𝛿𝛿 𝑛𝑛 and is therefore 
commonly called the discrete delta function.
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The Impulse Response of a System

The impulse response of a system is the output of the system when a unit impulse 
is the input.

The impulse response is usually denoted by ℎ 𝑛𝑛 .
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Discrete Convolution

The discrete convolution operation is formally defined by the following equation 
which is called the convolution sum.

𝑦𝑦 𝑛𝑛 = �
𝑚𝑚=0

𝑀𝑀−1

𝑓𝑓 𝑚𝑚 𝑔𝑔 𝑛𝑛 −𝑚𝑚

The convolution sum is normally written using the following shorthand notation:

𝑦𝑦 𝑛𝑛 = 𝑓𝑓 𝑛𝑛 ∗ 𝑔𝑔 𝑛𝑛



Discrete Convolution

In typical applications for discrete convolution 𝑓𝑓 𝑛𝑛  usually has many fewer 
samples than 𝑔𝑔 𝑛𝑛 . 

If 𝑓𝑓 𝑛𝑛  consists of 3 samples, the equations for 𝑦𝑦 𝑛𝑛  can be written as:

𝑦𝑦 0 = 𝑔𝑔 −2 𝑓𝑓 2 + 𝑔𝑔 −1 𝑓𝑓 1 + 𝑔𝑔 0 𝑓𝑓 0

𝑦𝑦 1 = 𝑔𝑔 −1 𝑓𝑓 2 + 𝑔𝑔 0 𝑓𝑓 0 + 𝑔𝑔 1 𝑓𝑓 0

𝑦𝑦 2 = 𝑔𝑔 0 𝑓𝑓 2 + 𝑔𝑔 1 𝑓𝑓 1 + 𝑔𝑔 2 𝑓𝑓 0

𝑦𝑦 3 = 𝑔𝑔 1 𝑓𝑓 2 + 𝑔𝑔 2 𝑓𝑓 1 + 𝑔𝑔 3 𝑓𝑓 0

𝑦𝑦 4 = 𝑔𝑔 2 𝑓𝑓 2 + 𝑔𝑔 3 𝑓𝑓 1 + 𝑔𝑔 4 𝑓𝑓 0

𝑦𝑦 5 = 𝑔𝑔 3 𝑓𝑓 2 + 𝑔𝑔 4 𝑓𝑓 1 + 𝑔𝑔 5 𝑓𝑓 0



Discrete Convolution

Notice that these equations represent the process of:

1. Multiplying the input samples by the left-right flipped impulse response. 
2. Summing the result to give the output sample.
3. Shifting the input samples from right to left for the next output sample. 

𝑦𝑦 0 = 𝑔𝑔 −2 𝑓𝑓 2 + 𝑔𝑔 −1 𝑓𝑓 1 + 𝑔𝑔 0 𝑓𝑓 0

𝑦𝑦 1 = 𝑔𝑔 −1 𝑓𝑓 2 + 𝑔𝑔 0 𝑓𝑓 0 + 𝑔𝑔 1 𝑓𝑓 0

𝑦𝑦 2 = 𝑔𝑔 0 𝑓𝑓 2 + 𝑔𝑔 1 𝑓𝑓 1 + 𝑔𝑔 2 𝑓𝑓 0

𝑦𝑦 3 = 𝑔𝑔 1 𝑓𝑓 2 + 𝑔𝑔 2 𝑓𝑓 1 + 𝑔𝑔 3 𝑓𝑓 0

𝑦𝑦 4 = 𝑔𝑔 2 𝑓𝑓 2 + 𝑔𝑔 3 𝑓𝑓 1 + 𝑔𝑔 4 𝑓𝑓 0

𝑦𝑦 5 = 𝑔𝑔 3 𝑓𝑓 2 + 𝑔𝑔 4 𝑓𝑓 1 + 𝑔𝑔 5 𝑓𝑓 0



Convolution Machine

The convolution machine is a graphical representation of this process:






Convolution End Effects

Notice that, when the convolution output is 𝑦𝑦 0  the required input is samples: 
𝑥𝑥 −3 , 𝑥𝑥 −2 , 𝑥𝑥 −1 , and 𝑥𝑥 0 . 

The problem is, three of these samples: 𝑥𝑥 −3 , 𝑥𝑥 −2 , and 𝑥𝑥 −1  do not exist! 

This same dilemma arises at the end of the signal, where the convolution requires 
samples to the right of the defined input signal.

One way to handle this problem is by adding zero samples to the ends of the input 
signal. 

This is called padding the signal with zeros.

Since these zero values are eliminated during the multiplication, the result is 
mathematically the same as ignoring the non-existent inputs.



The Importance of Discrete Convolution

Discrete convolution is an important operation in digital signal processing.

The output signal of any linear shift-invariant system is equal to the convolution of 
the system’s impulse response with the input signal of the system:

𝑦𝑦 𝑛𝑛 = ℎ 𝑛𝑛 ∗ 𝑥𝑥 𝑛𝑛
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Proof of 𝑦𝑦 𝑛𝑛 = ℎ 𝑛𝑛 ∗ 𝑥𝑥 𝑛𝑛

For ease of notation, in the following proof, brackets are replaced with subscripts.

Suppose that the impulse response of a linear shift-invariant system is given by:

ℎ𝑛𝑛 = ℎ0𝛿𝛿𝑛𝑛 + ℎ1𝛿𝛿𝑛𝑛−1 + ℎ2𝛿𝛿𝑛𝑛−2
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Proof of 𝑦𝑦 𝑛𝑛 = ℎ 𝑛𝑛 ∗ 𝑥𝑥 𝑛𝑛

Then let the input to the system 𝑥𝑥𝑛𝑛 be represented by 
a sum of scaled and shifted unit impulses:

𝑥𝑥𝑛𝑛 = 𝑥𝑥0𝛿𝛿𝑛𝑛 + 𝑥𝑥1𝛿𝛿𝑛𝑛−1 + 𝑥𝑥2𝛿𝛿𝑛𝑛−2 + 𝑥𝑥3𝛿𝛿𝑛𝑛−3
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For a linear shift-invariant system, a scaled and shifted impulse on the input will 
produce a scaled and shifted impulse response on the output.
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Proof of 𝑦𝑦 𝑛𝑛 = ℎ 𝑛𝑛 ∗ 𝑥𝑥 𝑛𝑛

where the shifted impulse responses are given by:

ℎ𝑛𝑛−1 = ℎ0𝛿𝛿𝑛𝑛−1 + ℎ1𝛿𝛿𝑛𝑛−2 + ℎ2𝛿𝛿𝑛𝑛−3
ℎ𝑛𝑛−2 =  ℎ0𝛿𝛿𝑛𝑛−2 + ℎ1𝛿𝛿𝑛𝑛−3 + ℎ2𝛿𝛿𝑛𝑛−4
ℎ𝑛𝑛−3 =  ℎ0𝛿𝛿𝑛𝑛−3 + ℎ1𝛿𝛿𝑛𝑛−4 + ℎ2𝛿𝛿𝑛𝑛−5

If the input to the linear shift-invariant system is the sum of scaled and shifted unit 
impulses, the output will be the sum of scaled and shifted impulse responses:

𝑦𝑦𝑛𝑛 = 𝑥𝑥0ℎ𝑛𝑛 + 𝑥𝑥1ℎ𝑛𝑛−1 + 𝑥𝑥2ℎ𝑛𝑛−2 + 𝑥𝑥3ℎ𝑛𝑛−3



Proof of 𝑦𝑦 𝑛𝑛 = ℎ 𝑛𝑛 ∗ 𝑥𝑥 𝑛𝑛

This equation for 𝑦𝑦𝑛𝑛 can be expanded to give:

𝑦𝑦𝑛𝑛 = 𝑥𝑥0 ℎ0𝛿𝛿𝑛𝑛 + ℎ1𝛿𝛿𝑛𝑛−1 + ℎ2𝛿𝛿𝑛𝑛−2 + 𝑥𝑥1 ℎ0𝛿𝛿𝑛𝑛−1 + ℎ1𝛿𝛿𝑛𝑛−2 + ℎ2𝛿𝛿𝑛𝑛−3

+ 𝑥𝑥2 ℎ0𝛿𝛿𝑛𝑛−2 + ℎ1𝛿𝛿𝑛𝑛−3 + ℎ2𝛿𝛿𝑛𝑛−4 + 𝑥𝑥3 ℎ0𝛿𝛿𝑛𝑛−3 + ℎ1𝛿𝛿𝑛𝑛−4 + ℎ2𝛿𝛿𝑛𝑛−5

Then rearranging to group like delta function terms gives:

𝑦𝑦𝑛𝑛 = 𝑥𝑥0ℎ0 𝛿𝛿𝑛𝑛 + 𝑥𝑥0ℎ1 + 𝑥𝑥1ℎ0 𝛿𝛿𝑛𝑛−1 + 𝑥𝑥0ℎ2 + 𝑥𝑥1ℎ1 + 𝑥𝑥2ℎ0 𝛿𝛿𝑛𝑛−2

+ 𝑥𝑥1ℎ2 + 𝑥𝑥2ℎ1 + 𝑥𝑥3ℎ0 𝛿𝛿𝑛𝑛−3 + 𝑥𝑥2ℎ2 + 𝑥𝑥3ℎ1 𝛿𝛿𝑛𝑛−4 + 𝑥𝑥3ℎ2 𝛿𝛿𝑛𝑛−5



-2 -1 0 1 2 3 4 5 6
-2

-1

0

1

2

Proof of 𝑦𝑦 𝑛𝑛 = ℎ 𝑛𝑛 ∗ 𝑥𝑥 𝑛𝑛

which gives the following equations for the individual 
samples of 𝑦𝑦𝑛𝑛:

𝑦𝑦0 = 𝑥𝑥0ℎ0
𝑦𝑦1 = 𝑥𝑥0ℎ1 + 𝑥𝑥1ℎ0
𝑦𝑦2 = 𝑥𝑥0ℎ2 + 𝑥𝑥1ℎ1 + 𝑥𝑥2ℎ0
𝑦𝑦3 = 𝑥𝑥1ℎ2 + 𝑥𝑥2ℎ1 + 𝑥𝑥3ℎ0
𝑦𝑦4 = 𝑥𝑥2ℎ2 + 𝑥𝑥3ℎ1
𝑦𝑦5 = 𝑥𝑥3ℎ2
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Proof of 𝑦𝑦 𝑛𝑛 = ℎ 𝑛𝑛 ∗ 𝑥𝑥 𝑛𝑛

Rewrite the equations for the individual samples of 𝑦𝑦𝑛𝑛 as shown below 
𝑦𝑦0 =  𝑥𝑥0ℎ0
𝑦𝑦1 =  𝑥𝑥0ℎ1 + 𝑥𝑥1ℎ0
𝑦𝑦2 = 𝑥𝑥0ℎ2 + 𝑥𝑥1ℎ1 + 𝑥𝑥2ℎ0
𝑦𝑦3 = 𝑥𝑥1ℎ2 + 𝑥𝑥2ℎ1 + 𝑥𝑥3ℎ0
𝑦𝑦4 = 𝑥𝑥2ℎ2 + 𝑥𝑥3ℎ1
𝑦𝑦5 = 𝑥𝑥3ℎ2

Notice that these equations represent the process of shifting the input samples 
from right to left, multiplying the samples by the flipped impulse response and 
summing the result for each shift to give the output sample. 

This process is the same as the discrete convolution of the input signal and the 
impulse response.



Proof of 𝑦𝑦 𝑛𝑛 = ℎ 𝑛𝑛 ∗ 𝑥𝑥 𝑛𝑛

So the general equation for the samples of 𝑦𝑦𝑛𝑛 can be written as:

𝑦𝑦𝑛𝑛 = �
𝑚𝑚=0

M

ℎ𝑚𝑚𝑥𝑥𝑛𝑛−𝑚𝑚

or

𝑦𝑦𝑛𝑛 = ℎ𝑛𝑛 ∗ 𝑥𝑥𝑛𝑛



Convolution Example: Low Pass Filter






Convolution Example: High Pass Filter






Correlation Example: Matched Filtering






Correlation Example: Matched Filtering with Noise






Further Reading

Smith, S. W. (1997). The scientist and engineer's guide to digital signal processing. 

Chapter 6 – Convolution

Chapter 7 – Properties of Convolution
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