C Language Basics

Types of Programming Languages
Different types of programming languages have evolved for humans to give instructions to computers:

1. Machine language — uses 0’s and 1’s to talk to the CPU/processor, but is hard to learn for
programmers.

e.g. 0011 1100 is an instruction that can be sent to an 8-bit processor as an instruction.

2. Assembly language — uses codes instead of 0’s and 1’s. Easier but still hard to learn.

e.g. MOV A, B means move the contents of register A to register B.

3. High Level Languages (HLLs) — closer to human language. So, they are easier to learn and
implement.

Machine independent i.e. portable. Syntax and standards are well defined.

Types of Code for Programming in a HLL

The Source Code contains instructions written in the HLL. e.g. c= a+b; which means add the contents of
variables a and b and store result in variable ¢. Microprocessors don’t understand instructions written
in a HLL so the processor uses a compiler to translate the source code into Object Code. Object code
consists of 0’s and 1’s. An object file is generated at this stage. e.g. 0100 1000 1001 1100 could be an
instruction for a 16-bit processor.

HLL Program Execution Steps

To create an executable file from C source code, we first create a C program using an editor. There are
then four phases required for a C program to become an executable file:

1. Pre-processing
2. Compilation
3. Assembly
4. Linking
The pre-processing phase includes:
1. Removal of Comments

2. Expansion of Macros

3. Expansion of the included files
The next step is to compile the pre-processed code to produce assembly level instructions.

In the assembly phase, the assembly level instructions are translated to machine level instructions in
the object code. At this phase, only code written by the programmer is converted into machine
language, C function calls like print£() are not translated.

The final linking phase is where pre-defined C function calls like print£() are linked with their
machine level definitions. The linker knows where all these definitions are stored.

include <stdio.h>

Int main()

printf("Hello World!");
return 0;

C code/

Source code \

8O translates

Object /
Code
obj file \
Linker

creates .exe file

Compiler

Processor

executes

Output: /
Hello World!

Basic Elements of a C Program

The C language was created for programming the UNIX operating system. It was created by Dennis
Richie in the 1970s and was derived from a language called B. C is often referred to as a mid-level
language as it has the simplicity of a high-level language syntax and the power of a low-level language.
As a result, programs written in C can be very fast.

Every full C program begins inside a function called “main”. The main function is always called when
the program first executes. Other functions can be called from inside main. The

statement is a pre-processor directive that tells the compiler to put code from the header file called
“stdio.h” into your program before actually creating the executable. This effectively takes everything in
the header file and pastes it into your program. By including header files, you can gain access to many
different functions. For example, the printf function is included in “stdio.h”.

The statement int main () tells the compiler that there is a function named “main”, and that the
function returns an integer. The curly braces { and } signal the beginning and end of functions and
other code blocks. A code block is just a segment of code surrounded by curly braces. The printf
function is the standard way in C for displaying output on the screen.

A single line comment starts with // and goes on until the end of the line. A multi-Line comment starts
with /* and ends with * /. Everything in between /* and */ will be ignored by the compiler.

At the end of the program, a value is returned from ma in to the operating system by using the
return statement. This return value is important as it can be used to tell the operating system
whether the program succeeded or not. Usually, a return value of 0 means success.

/ *
This code illustrates the basic elements of a C program.
*/

// include the stdio.h library

// The main function starts here:

int main ()

{
printf ("Hello World!\n");
return O;

Expected Output:

Hello World!

Exercise 1

Run the following code and verify that it produces the expected output shown below.

int main ()

{
printf ("Hello World!\n");
return O;

Expected Output:

Hello World!

Keywords

Keywords are reserved words that the C language uses for denoting something specific. The keywords
are always written in lowercase. This table shows the 32 Keywords used in C:

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while
Identifiers

Identifiers are the words we use to name entities like variables, functions, arrays, structures, symbolic

constants etc.

The rules for naming identifiers are as follows:
1. Identifiers must consist of alphanumeric characters or underscores only.
2. The first character should be an alphabetic character or an underscore.
3. The identifier should not be a keyword.

4. ldentifiers can be of any length.

Data Types

C uses different data types when storing data in memory. Each different type has a specific range and

is stored using a set number of bits.

The four basic C data types are:
char: alphanumeric characters and special symbols e.g. ‘a’, ‘A’, ‘1, /', ...
int: integers (whole numbers)
float: floating point representation of real numbers

double: double precision real numbers

The C language also has the following type qualifiers which can be applied to the basic data types to
define more types:

size qualifiers: short, long

sign qualifiers: signed, unsigned
When the unsigned qualifier is used, the number is always positive, and when signed is used the
number may be positive or negative. If the qualifier is not present then the signed qualifier is
assumed.

Typical Range and Stored Size of Integer Data Types on a 64-bit Computer

In C, the size of the data type is machine dependent. For an old 16-bit machine, the size of an int is 2
bytes. If, you are working on a 32-bit or 64-bit machine, then the size of an int is 4 bytes.

These tables show the typical range and size of different data types on a 64-bit machine:

Keyword Range Stored Size
char 2710271 1 byte
short int —2Bt0215-1 2 bytes
int —231t0 2311 4 bytes
long int =231t 2311 4 bytes
long long int —263t0 2631 8 bytes

Keyword Range Stored Size

unsigned char 0to28—1 1 byte
unsigned short int 0to216—1 2 bytes
unsigned int 0to232-1 4 bytes
unsigned long int 0to232-1 4 bytes
unsigned long long int 0to264—1 8 bytes

Bit Interpretation and Stored Size of Float Data Types

Floating point representations vary from machine to machine. Fortunately, one is by far the most
common: the IEEE-754 standard. An IEEE-754 float (which is stored using 4 bytes) or double (which is
stored using 8 bytes) has three components: a sign bit indicating whether the number is positive or
negative, an exponent giving its order of magnitude, and a mantissa specifying the actual digits of the
number. Using single-precision floats as an example, the bit layout of the 4 bytes looks like this:

31 0

I:l sign I exponent I mantissa

The value of the floating point number is the mantissa multiplied by 27 (2 to the power of the
exponent). Notice that we are dealing with binary fractions, so that 0.1 (the most significant mantissa
bit) means 1/2. The place values to the right of the decimal point are 2 (1/2), 22 (1/4), 23 (1/8) and so
on. Just like we have 10 (1/10), 10 (1/100), and so on, in decimal. To represent very small numbers
the value of the exponent must be negative so 127 and 1023 is subtracted from the binary exponent
value for floats and doubles respectively. This table shows the value, bit interpretation and size of
IEEE-754 floats and doubles:

Keyword Value Bit Interpretation Size
S=by, S=1bit
float SISX (1+M) X 2E12D | E=1427+ b,g20+ ... + b,320 | E =8 bits
M=1b,2"14b,22+ ... + b2 | M =23 bits
S=Dbg; S=1bit
double |-15x(1+M)x2(E1023) | F=b 210+ b, 29+ ... +bs5,20 | E= 11 bits
M=bs5,2 14+ bs22+ ... + b2 | M =52 bits

Examples
Question:
Which decimal number is stored in this IEEE-754 £float:

01000000011000000000000000000000

Solution:

sign exponent mantissa
binary 0 10000000 11000000000000000000000
decimal S=0 E=128 M =0.5+0.25=0.75
formula terms -15=1 E-127=1 1+M =1.75

solution 1 X 21 X 1.75 = 3.15

Question:

Which decimal number is stored in this IEEE-754 float:

10100000001010000000000000000000

Solution:
sign exponent mantissa
binary 1 01000000 01010000000000000000000
decimal S=1 E=64 M =0.25+0.0625 = 0.3125
formula terms -15=-1 E-127 =-63 1+M = 1.3125
solution -1 X 263 1.3125 = -1.42x107"°

Exercise 2

Run the following code and verify that it produces the expected output shown below.

void main ()

{

printf ("%$22s %4s %24s\n", "", "Size", "Range");

printf ("$-22s $21u %22d - %d\n", "char", sizeof (char), CHAR MIN, CHAR MAX);

printf ("%-22s %2lu %22hd - %hd\n", "short int", sizeof (short int), SHRT MIN, SHRT MAX);

printf ("%$-22s %21lu %22d - %d\n", "int", sizeof (int), INT_MIN, INT MAX);

printf ("%$-22s %$21lu %$221d - $1d\n", "long int", sizeof(long int), LONG MIN, LONG_ MAX) ;

printf ("%$-22s %21lu %2211d - %11d\n\n", "long long int", sizeof(long long int), LLONG MIN, LLONG MAX) ;
printf ("%-22s %2u %22d - %d\n", "unsigned char", sizeof (unsigned char), 0, UCHAR MAX);

printf ("%$-22s %2u %22d - %d\n", "unsigned short int", sizeof (unsigned short int), 0, USHRT MAX);
printf ("$-22s %2u %22d - %u\n", "unsigned int", sizeof (unsigned int), 0, UINT MAX);

printf ("%$-22s %2u %22d - %lu\n", "unsigned long int", sizeof (unsigned long int), 0, ULONG MAX) ;
printf ("%-22s %2u %22d - %1lu\n\n", "unsigned long long int", sizeof (unsigned long long), 0, ULLONG MAX) ;
printf ("%$-22s %2u %22le - %$le\n", "float", sizeof (float), FLT MIN, FLT MAX);

printf ("$-22s %2u %22le - %$le\n\n", "double", sizeof (double), DBL MIN, DBL MAX);

printf ("%$-24s %$4s\n", "", "Precision");

printf ("%-22s %le\n", "float", FLT EPSILON) ;

printf ("%$-22s %$le\n\n", "double", DBL_EPSILON) ;

Expected Output

Range
char -128 - 127
short int -32768 - 32767
int -2147483648 - 2147483647
long int -2147483648 2147483647
long long int -9223372036854775808 9223372036854775807

unsigned char 255
unsigned short int 65535
unsigned int 4294967295

unsigned long int 4294967295
unsigned long long int 18446744073709551615

float 1.175494e-038 3.402823e+038
double 2.225074e-308 1.797693e+308

Precision
float 1.192093e-007
double 2.220446e-016

Constants

A constant (which is sometimes called a literal) is an entity that doesn’t change. In C there are two
types of constants:

1. Primary constants.
2. Secondary constants.

Both types are further divided into more categories as shown in this block diagram:

Primary Secondary
constants constants

Integer Constant Array
Floating point Constant Pointer
Character Constant Structure
Union
Enum

We will only look at primary constants for now. Some of the secondary constants will be discussed
later.
Numeric Constants

Numeric constants are digits that may or may not have a decimal point. The rules for creating numeric
constants are:

1. A constant must contain at least one digit.
2. No spaces, commas or any other special symbols are allowed.

3. Aconstant can be positive or negative. If no sign precedes a constant then it is assumed to be
positive.

There are two types of numeric constants:
1. Integer constants

2. Floating point or real constants

Integer Constants

Integer constants do not have a decimal point. They can be written using decimal numbers (base 10),
octal numbers (base 8) and hexadecimal numbers (base 16).

Decimal constants contain digits between 0 and 9, but should not begin with 0. For example:
43 199 3452 -100
Octal constants contain digits between 0 and 7, and must begin with 0. For example:

012 034 01144

Hexadecimal constants contain digits from 0 to 9, and letters from a—£ (either in uppercase or
lowercase), and must always start with Ox or 0X. For example:

0x23 OXff 0x37a OXFF 0x37A

Floating Point or Real Constants — Fractional Form
Numeric constants which have a decimal point are called floating point or real constants.
Floating-point constants can be written in two forms:
1. Fractional form
2. Exponential form or Scientific notation
The rules for creating floating point constants in fractional form are:
1. Must have one at least one digit
2. Must have a decimal point
3. Can be positive or negative, the default is positive
4. No comma, blanks, or any other symbols are allowed

Here are some examples of floating point constants in fractional form:

3.14 899.0 -0.999

Floating Point or Real Constants — Exponential Form

Exponential form is used in cases when a number is too small or too large. For example, 0.00000941
can be represented as 9.41e-6. The rules for creating floating point constants in exponential form
are:

1. The mantissa and exponent must be separated by e or E.

2. The mantissa can be positive or negative, the default is positive.
3. The exponent must have at least one digit.

4. The exponent can be positive or negative, the default is positive

Here are some examples of floating point constants in exponential form:

00.34e4 -56E10 0.233E10 -0.94el5

ASCII

The American Standard Code for Information Interchange (which is usually referred to as ASCIl) is a
standard that defines how to translate from an 8-bit binary number to an alphanumeric character or
symbol. This table shows the ASCII translations:

Character Hex Decimal | Character Hex Decimal |Character Hex Decimal |Character Hex Decimal
NUL (null) 0 0 Space 20 32 @ 40 64 . 60 96
Start Heading 1 1 ! 21 33 A 41 65 a 61 97
Start Text 2 2 “ 22 34 B 42 66 b 62 98
End Text 3 3 # 23 35 C 43 67 c 63 99
End Transmit. - - $ 24 36 D 44 68 d 64 100
Enquiry 5 5 % 25 37 E 45 69 e 65 101
Acknowlege 6 6 & 26 38 F 46 70 f 66 102
Bell 4 7 ’ 27 39 G 47 71 g 67 103
Backspace 8 8 (28 40 H 48 72 h 68 104
Horiz. Tab 9 9) 29 41 | 49 73 i 69 105
Line Feed A 10 * 2A 42 J 4A 74 i 6A 106
Vert. Tab B 11 + 2B 43 K 4B 75 k 6B 107
Form Feed C 12 , 2C 44 L 4C 76 | 6C 108
Carriage Return D 13 - 2D 45 M 4D 77 m 6D 109
Shift Out E 14 . 2E 46 N 4E 78 n 6E 110
Shift In F 15 / 2F 47 (o] 4F 79 o 6F 111
Data Link Esc 10 16 0 30 48 P 50 80 p 70 112
Direct Control 1 11 17 1 31 49 Q 51 81 q 71 113
Direct Control 2 12 18 2 32 50 R 52 82 r 72 114
Direct Control 3 13 19 3 33 51 S 53 83 s 73 115
Direct Control 4 14 20 4 34 52 T 54 84 t 74 116
Negative ACK 15 21 5 35 53 U 55 85 u 75 117
Synch Idle 16 22 6 36 54 V' 56 86 v 76 118
End Trans Block 17 23 7 37 55 w 57 87 w 77 119
Cancel 18 24 8 38 56 X 58 88 X 78 120
End of Medium 19 25 9 39 57 Y 59 89 y 79 121
Substitue 1A 26 : 3A 58 z 5A 90 z TA 122
Escape 1B 27 ; 3B 59 [5B 921 { 7B 123

Character Hex Decimal | Character Hex Decimal |Character Hex Decimal|Character Hex Decimal
Form Separator 1C 28 < 3c 60 \ 5C 92 | 7C 124
Group Separator 1D 29 = 3D 61] 5D 93 } 7D 125
Record Separator 1E 30 > 3E 62 ~ 5E 94 ~ 7E 126
Unit Separator 1F 31 ? 3F 63 _ 5F 95 Delete 7F 127

Character Constants

A character constant is a single alphanumeric character or special symbol enclosed in single quotes.
The maximum length of a character constant is 1 character long. You cannot put more than one
character inside the single quotation marks. Here are some examples of character constants:

Consider this statement:
char ch = 'a'; // declare a variable ch and assign 'a' to it

Here we are declaring a variable ch of type char and assigning a character constant 'a ' toit.
Although it might appear that we are assigning 'a' to the variable ch, we are actually assigning the
ASCll value of 'a' (which has a decimal value of 97) to the variable ch.

String Constants

String constants consist of zero or more characters enclosed in double quotes. The null character
(which has an ASCII value of 0) is automatically placed at the end of a string by the compiler. Here are
some examples of string constants:

"hellol' "123" mwwn

The empty string " " consists of only the null character which is added by the compiler.

Although not officially a primary constant, we mention string constants here for completeness. C has
no string data type as strings are stored as an array of characters.

Symbolic Constants

If we want to use a constant several times in a program, we can give it a name. For example, if there is
a need to use the constant it = 3.141592 at several places in the program, we can give it a name and
use that name instead of writing this long number. This constant is called a symbolic constant and is
generally defined at the beginning of the program using a statement with this syntax:

#define NAME VALUE

is a pre-processor directive just like . indicates the name we want to give
to the constant and is generally written in uppercase. can be a numeric, character or string
constant.

Let’s create a symbolic constant called using this statement:

When the program is compiled, the pre-processor replaces every occurrence of P T by its value. For
example, this statement:

printf ("Circumference of a circle = %f", 2*PI*4);

will be compiled as if the statement was:

printf ("Circumference of a circle = %f", 2*3.14159*4);

Use of symbolic constants makes a program more maintainable and readable. For example, let’s say
we wanted more accurate results, so we decided to update the value of m from 3.14159 to
3.14159265359. If we had not used a symbolic constant, we would have to go through the code and
find each occurrence of 3.14159 and update all of them. However, since we have already defined
ina directive, we only need to make the change in one place.

Variable Declarations

Variables are used to store data. As their name suggests, the value assigned to a variable can change.
However, once you declare a variable to be a certain data type, you can’t change the type of the
variable later in the program.

Before you can use a variable you need to declare it. Declaring a variable involves specifying the type
and name of the variable. Some example variable declarations are shown here:

int i;
char letter;

float x;
double dil;

you can declare multiple variables of the same type like this:
int a, b, ¢, d;

When a variable is declared it contains an undefined value. You can assign an initial value to the
variable using the assignment operator (=). Assigning an initial value to the variable is called
initialization of the variable. Here are some examples of variable initialization:

int a = 12, b
float £ = 1.2;
char letter = 'a';

double dl, d2, d3 = 1.2;

= 100;

In the last statement, only d3 is initialized, d1 and d2 still contain an unknown value.

Exercise 3

Complete the following code so that it produces the expected output shown below.

// Define a constant with the name PI and value 3.141592.

int main ()

{ // Declare an integer variable with the name radius.
// Assign a value of 5 to the variable radius.

printf ("Circumference of the circle = %f\n", 2*PI*radius);

return 0;

Expected Output

Circumference of the circle = 31.415920

Input and Output

Format Specifications

In this section we will discuss the input function scanf () and the output function printf (). Both
of these functions require format specifications to describe the format of the input and output.

Each format specification begins with a $ symbol. This table shows some common format
specifications:

Format

ificati Description
Specification Ipti

a single character

an integer

floating point number

a hexadecimal integer

an octal integer

an integer, hexadecimal or octal
a string

an unsigned integer

a short integer

a long integer

a long long integer

a long integer in exponential form

Q| Q

b

c

=y

|||]|]|]]]]
0n|+-10

[i g
o |+

Printing Special Characters

This table shows format specifiers that print special characters when used as printf () format
specifiers:

Format Description

Specification
\a audible alert
\f form feed
\n newline, or linefeed
\r carriage return
\t tab
AN\ print a backslash
\' print a single quote
\" print a double quote
%% print a percent sign

Outputting Data

The printf () function is used to output data to the console. The syntax of this function is shown
here:

printf ("control string", variablel, wvariable2 , ...);

The control string controls how the output will appear on the screen and contains format specifications
and text enclosed in double quotes.

The variable arguments specify which data to print on the console. These arguments can also be
constants and expressions. The variable arguments are optional but each variable must have a format
specification in the control string.

Example

int main ()
{
int ival = 100;
double real num = 32.78;

char ch = 'a';

printf ("integer value = %d\n",ival);
printf ("real value = %f\n",real num);
printf ("character value = %c",ch);

return 0;

Expected Output

integer value = 100
real value = 32.780000

character value = a

Reading Input from the Keyboard

The scanf () function is used to read input from the keyboard. The syntax of this function is shown
here:

scanf ("control string", addressl, address2 , ...);

The control string contains one or more format specifications enclosed in double quotes. The number
of format specifications depends on the number of variables we want to input.

The next parameter, address1 is the memory address of the variable that will be used to store the
input data. We will discuss addresses later when we talk about pointers. The scanf () function
expects at least one address. The address of the variable is designated by preceding a variable name
with the & symbol.

Example

int main ()
{
int i;

printf ("Enter a number: ");

// accept input from keyboard
scanf ("%d", &i);

printf ("You entered %d", 1i);

return 0;

Expected Output

Enter a number: 10

You entered 10

Exercise 4

Complete the following code so that it produces the expected output shown below.

int main ()

{

// Declare three integer variables with the names:
// length, width, area

printf ("Input the length of the rectangle: ");
scanf ("%d", &length) ;

// Allow the user to input the width of the rectangle.

// Calculate the area of the rectangle and assign this
// value to the variable area.

printf ("Area of the rectangle = %d\n", area);
return O0;

Expected Output

Input the length of the rectangle: 10

Input the width of the rectangle: 20
Area of the rectangle = 200

Formatting Integer Output

The width of the integer printed on the console can be controlled using an extra number in the format
specifier of integer data types. This example demonstrates the use of the width format specification. If
the length of the variable is more than the width specified, the output is printed correctly. If the length
of the variable is less than the width specified, the value is printed right-justified with leading spaces. If
a zero is inserted before the width specifier, the value is printed with leading zeros. If a minus sign is
inserted before the width specifier, the value is printed left-justified.

int main ()

{
int i = 23, j = 75;

printf ("i=%2d j=%2d\n",1i,3);
printf ("i=31d §=%1d\n",i,3);
printf ("i=%4d j=%4d\n",1i,3);
printf ("i=%04d j=%04d\n",1i,J);
printf ("i=%-4d j=%-4d\n",1i,3);

return 0;

Expected Output

i=23 =75
i=23 =75
i= 23 = 75

1i=0023 §=0075
i=23 4=75

Formatting Floating Point Output

The number of decimal places printed can be controlled using a decimal point and an extra number in
the format specifier of floating point data types. This example demonstrates the use of the
specification for the number of decimal places printed. If the variable has more decimal places than the
number specified, the value is rounded before the output is printed. If the variable has less decimal
places than the number specified, the value is printed with trailing zeros.

int main ()

{
double i = 23.5492, j = 75.6972;

printf ("i=%-8.2f J=%-8.2f\n",1i,3);
printf ("i=%-8.4f j=%-8.4f\n",1i,3);
printf ("i=%-8.5f j=%-8.5f\n",1i,3);

return 0;

Expected Output

i=23.55 4=75.70
1=23.5492 §=75.6972

1=23.54920 j=75.69720

Exercise 5

Complete the following code so that it produces the expected output shown below.

int main ()

{
// Declare three floating point variables with the names:
// length, width, area

printf ("Input the length of the rectangle: ");
scanf ("$f", &length);

// Allow the user to input the width of the rectangle.

// Calculate the area of the rectangle and assign this
// value to the variable area.

printf ("Area of the rectangle = ", area);

// Print the value of the variable area
// with 2 decimal places.

return O;

Expected Output

Input the length of the rectangle: 10.57
Input the width of the rectangle: 2.38

Area of the rectangle = 25.16

Storing Data in a File

In C we can store data in a file in two ways:

1. Text
2. Binary

In text mode, data is stored as a line of characters terminated by a newline character (“\n’) where each
character occupies 1 byte. To store 1234 in a text file would take 4 bytes, 1 byte for each character.
The important thing to note is that in text mode what gets stored in the memory is the binary
equivalent of the ASCIl number of the character. Here is how 123456 is stored in the file in text mode:

1st byte 2nd byte 3rd byte 4th byte Sth byte &th byte

0011 ooo1 | 0011 0010 | 0011 0011 | 0011 0100 | 0011 0101 | 0011 0110

'1'(49) '2'(50) '3'(51) '4'(52) '5'(53) '6'(54)

As you can see from this example it takes 6 bytes to store 123456 in text mode.

In binary mode, data is stored on a disk in the same way as it is represented in computer memory. As a
result, storing 123456 in a binary mode would take only 2 bytes. Here is how 123456 is stored in the
file in binary mode:

1110 0010 | 0100 0000

Opening a File

Before any input/output can be performed with a file you must first open the file. This is the syntax of
the fopen () function which is used to open a file:

FILE *fopen (const char *filename, const char *mode);

where filename is a string containing the name of the file and mode specifies what you want to do
with the file.

On success the fopen () function returns a pointer to a structure of type FILE. (We will explain
pointers and structures later.) The FILE structure is defined in stdio.h and contains information about
the file like name, size, buffer size, current position, end of file etc.

On error the fopen () function returns NULL.

File Modes

Here are the possible values for mode:

1. "w" (write) — This mode is used to write data to the file. If the file doesn’t exist this mode
creates a new file. If the file already exists then this mode first clears the data inside the file
before writing anything to it.

2. "a" (append) — This mode is called append mode. If the file doesn’t exist this mode creates a
new file. If the file already exists then this mode appends new data to end of the file.

3. "r" (read)—This mode opens the file for reading. To open a file in this mode file must already
exist. This mode doesn’t modify the contents of the file in anyway. Use this mode if you only
want to read the contents of the file.

4, "w+" (write + read) — This mode is a same as "w" but in this mode, you can also read the data.
If the file doesn’t exist this mode creates a new file. If the file already exists then previous data
is erased before writing new data.

5. "r+" (read + write) — This mode is same as "r" mode, but you can also modify the contents of
the file. To open the file in this mode file must already exist. You can modify data in this mode
but the previous contents of the file are not erased. This mode is also called update mode.

6. "a+" (append + read) — This mode is same as "a" mode but in this mode, you can also read
data from the file. If the file doesn’t exist then a new file is created. If the file already exists then
the new data is appended to the end of the file. Note that in this mode you can append data
but can’t modify existing data.

To open the file in binary mode you need to append "b" to the mode like this:

Mode Description
"wb" Open the file in binary mode
"a+b" or"ab+" Open the file in append + read in binary mode

The £scanf Function

The £scanf () function is used to read formatted input from a file. This is the syntax of the function:
int fscanf (FILE *fp, const char *format [, argument, ...]);

It works just like scanf () function but instead of reading data from the standard input it reads the
data from a file. The arguments of £scanf () are the same as scanf (), except it needs the

additional argument £p which is a file pointer. On success, this function returns the number of values
read and on error or if it reaches the end of the file it returns EOF or -1.

The fprintf Function

The fprintf () function is used to write formatted output to a file. This is the syntax of the function:
int fprintf(FILE *fp, const char *format [, argument, ...]);

It works just like printf () butinstead of writing data to the console it writes data to a file. The
arguments of fprintf () are the same as printf (), except it needs the additional argument fp
which is a file pointer. On success, this function returns the total number of characters written to the
file. On error, it returns EOF.

Example

#include<stdio.h>

int main ()

{
FILE *fp;
char *name, *name in;
int id, id in, chars;
float score, score in;

id = 7803017;
name = "Pickering";
score = 85.7;

fp = fopen ("student records.txt", "w+");

if (fp == NULL)

{
printf ("Error opening file\n");
exit(l);

}

printf ("Testing fprintf () function: \n\n");
chars = fprintf (fp, "Name: %s\t\tID: %$7d\t\tMark: %$6.2f\n", name, id, score);

printf ("%d characters successfully written to the file:\n", chars);
printf ("Name: %s\t\tID: $7d\t\tMark: %6.2f\n\n", name, id, score);

rewind (fp) ;

printf ("Testing fscanf () function: \n\n");
fscanf (fp, "Name: %s\t\tID: %d\t\tMark: %$f\n", name in, &id in, &score in);

printf ("characters read from the file:\n");
printf ("Name: %s\t\tID: %7d\t\tMark: %$6.2f\n", name in, id in, score in);

fclose (fp) ;
return O;

Expected Output

Testing fprintf () function:

43 characters successfully written to the file:
Name: Pickering ID: 7803017 Mark:

Testing fscanf () function:

characters read from the file:
Name: Pickering ID: 7803017

Exercise 6

Complete the following code so that it produces the expected output shown below.

#include<stdio.h>

int main ()
{
FILE *fp;
int chars;
float height, height in;

printf ("Enter your height in centimeters: ");
scanf ("$f", &height);

// Open the file "height.txt" in write + read mode.
// Assign the file pointer fp to the file.

// Check to see if the file was opened correctly.
// If not, display an error message and exit the program.

printf ("\nTesting fprintf () function: \n\n");

// Write the value of height to the file "height.txt".
// The output should be formatted as:

// Height: nnn.nn

//

// Assign the number of characters correctly written
// to the variable chars.

printf ("$d characters were written to the file:\n", chars);
printf ("Height: %$6.2f\n\n", height);

rewind (fp) ;
printf ("Testing fscanf () function: \n\n");

// Read a value of height from the file "height.txt".
// The file is formatted as:
// Height: nnn.nn

//
// Assign the value to the variable height in.

printf ("characters read from the file\n");
printf ("Height: %6.2f\n\n", height in);

// Close the file "height.txt".

return 0;

Expected Output
Enter your height in centimeters: 178
Testing fprintf () function:

15 characters successfully written to the file:
Height: 178.00

Testing fscanf () function:

characters read from the file:
Height: 178.00

Expressions and Operators in C

Operators and Operands

An operator specifies an operation on the data which yields a value. The data item on which the
operator acts is called an operand.

Operator

b
X +y

t 1

Operands

Some operators need two operands while some need only one. C language provides the following
operators:

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Conditional Operators

5. Assignment Operators

6. Bitwise Operators

7. sizeof Operator

Arithmetic Operators

This table lists the arithmetic operators in C:

Operator | Description

+ plus

- minus

* multiply
/ divide

o°

remainder

The first four operators work as usual, but you might not have seen the % operator. The % operator is
known as the remainder or modulus operator. The remainder operator is used to calculate the
remainder of a division operation. For example, 9%2 would produce 1. An important thing to note is
that the remainder operator only works with integers, you can’t apply the % operator on £loat or
double types.

Integer Arithmetic

When both operands are integers then the result of the arithmetic operation between two integer
operands yields an integer value. Let’s take two variables a and b, where a = 10 and b = 4. This table
shows the results of arithmetic operations performed on a and b.

Expression Result
atb 14
a-b 6
a*b 40
a/b 2
asb 2

We know that 10/4 = 2.5, but because both operands are integers, the decimal value is truncated.

For the division and remainder operators to work, the second operand must be non-zero, otherwise,
the program will crash.

Floating Point Arithmetic

An operation between two floating point operands always yields a floating point result. Let’s take two
variables a and b, where a = 11.2 and b = 4.5. This table shows the results of arithmetic operations
performed on a and b.

Expression Result
a+tb 15.700000
a-b 6.700000
a*b 50.399999
a/b 2.488889

Mixed Mode Arithmetic

An operation between an integer and a floating point yields a floating point result. In this operation,
the integral value is first converted to a floating point value and then the operation is performed. Let’s
take two variables a and b, wherea = 14 andb = 2.5. This table shows the results of arithmetic
operations performed on a and b.

Expression Result
a+b 16.500000
a-b 11.500000
a*b 35.000000
a/b 5.600000

As we can see, when 14 is divided by 2. 5 the fractional part is not lost because an arithmetic
operation between an int and a £1loat yields a £loat value. So we can use mixed mode arithmetic
to solve the problem we encountered while dividing 10/4. To get the correct answer simply make one
of the operands involved in the operation a floating point number. For example, 10/4.00r10.0/4
both will give the correct result of 2. 5.

Relational Operators

Relational operators are used to compare values of two expressions. Relational operators are binary
operators because they require two operands to operate. An expression which contains the relational
operators is called a relational expression. If the relation is true then the result of the relational
expression is 1, if the relation is false then the result of the relational expression is 0. This table shows
the C relational operators:

Operator Description
> is greater than
< is less than
>= is greater than or equal to
<= is less than or equal to
== is equal to
I= is not equal to

Logical Operators

Logical operators are used to evaluate two or more conditions. In general, logical operators are used to
combine relational expressions, but they are not limited to just relational expression. You can use
logical operators with any kind of expression, even constants. In C, all non-zero values are considered
to be a logical true while 0 is considered to be a logical false. If the result of the logical operator is true
then 1 is returned otherwise 0 is returned. This table shows the C logical operators:

Operator Description
&& logical AND
[logical OR
! logical NOT

Conditional Operator

The conditional operator (? and :)is a special operator which requires three operands:
expressionl ? expression?2 : expression3

If expressionl is true then the result of the overall expression becomes expression?2. If
expressionl is false, then the result of the overall expression becomes expression3.

For example, this code assigns the greater of two variable values to the variable max using the
conditional operator:

max = a > b ? a : b;

If a is greater than b then the expression a > b is true and the statement is evaluated asmax = a.lf
b >= athenthe expressiona > bis false and the statement is evaluated asmax = b.

Assignment Operator

The assignment operator (=) is used to assign a value to a variable. The operand on the left-hand side
of the assignment operator must be a variable and the operand on the right-hand side must be a
constant, variable or expression. Here are some examples:

x = 18; // right operand is a constant
y = X; // right operand is a variable
z =1 * 12 + x; // right operand is an expression

Compound Assignment Operator
Consider the statement:
x = x + 5;

Here the right-hand side adds 5 to the existing value of x. This value is then assigned back to x. To
handle operations like this more concisely, C provides a special operator called a compound
assignment operator. The general format of the compound assignment operator is:

variable op= expression
where op can be any of the arithmetic operators (+, -, *, /, %).
This statement is equivalent to:

variable = variable op (expression)

For example, the statement x += 5; isequivalenttox = x + 5;.

Increment and Decrement Operators in C

C has two special unary operators called increment (++) and decrement (--) operators. These
operators increment and decrement the value of a variable by 1. For example:

++xisthesameasx = x + lorx +=1
--xisthesameasx = x - lorx -=1

The Increment and decrement operators can only be used with variables. They can’t be used with
constants or expressions. There are two types of Increment/Decrement operators:

1. Prefix increment/decrement operator.

2. Postfix increment/decrement operator.

Prefix and Postfix Increment/Decrement Operator

The prefix increment/decrement operator immediately increases or decreases the current value of the
variable. This value is then used in the expression. For example, in this statement:

y = ++x;
the current value of x is incremented by 1 and then the new value of x is assigned to y.

For the postfix increment/decrement operator, the current value of the variable is used in the
expression. Then the value of the variable is increased or decreased.

For example, in this statement:
y = Xt++;

the current value of x is assigned to y and then the value of x is incremented by 1.

Bitwise Operators

Bitwise operators are used for manipulating data at the bit level. This table shows the C bitwise
operators:

Operator Description

<< shift left

>> shift right

& bitwise AND

| bitwise OR

bitwise exclusive OR

~ ones complement

Example

This program shows the use of bitwise operators:

int main ()
{ unsigned char a = 5, b = 9;
printf ("a = $s (%d) \nb = %s (%d) \n\n", "00000101", a, "00001001", b);
printf ("AND: a&b = %$s (%d)\n", "00000001", a & Db);
printf (" OR: alb = %s (%d)\n", "00001101", a | b);
printf ("XOR: a”b = %s (%d)\n", "00001100", a ~ Db);
printf ("NOT: ~a = %$s (%d)\n\n", "11111010", a = ~a);
printf (" Shift Left: b<<l = %s (%d)\n", "00010010", b << 1);

printf ("Shift Right: b>>1 = %s (%d)\n", "00000100", b >> 1);

return O;

Expected Output

= 00000101 (5)
= 00001001 (9)

: a&b = 00000001
OR: alb = 00001101

)
XOR: a"b 00001100)
NOT: ~a 11111010 0

)

Shift Left: b<<l = 00010010 (18)
Shift Right: b>>1 = 00000100 (4)

Bitwise operators can be used in integer calculations to reduce the execution time of code. For
example, b<<1 executes much faster than b*2.

sizeof Operator

The unary operator sizeof () is used to determine the size of its operand. The syntax for the
sizeof () operatoris:

sizeof (object)

where object can be a data type keyword like int, £loat, double or an expression or a variable.
For example, sizeof (int) gives the size occupied by an int data type. The sizeof () operator
returns size in bytes.

Implicit Type Conversion in C

In C, data types have a rank order as shown in this diagram:

[long double] Highest rank

t

[double]

o)
1\

[unsigned long int]

—

[long int]

=

[unsigned int]

.
f

[char, short int] Lowest rank

—3

In expressions that contain two operands of different types, one operand is automatically converted to
the other type by the compiler. This process is known as implicit type conversion. The operand with the
lower rank will be converted to the data type of the operand with the higher rank.

Type Conversion in Assighment

If the types of the operands in an assignment expression are different, the operand on the right-hand
side will be converted to the type of the left-hand operand. Some consequences of type conversion in
an assignment expression are:

1. High order bits may be lost when 1long intis converted to int or int to short intor

char.

2. The fractional part will be truncated during conversion from floating point types to integer
types.

3. When adouble is converted to a £1oat digits are rounded off.

4. When an integer type is converted to a £1loat ora float is converted to a double there is
no increase in accuracy.

5. When a signed type is changed to an unsigned type, the signh may be dropped.

Explicit Type Conversion

The type of a constant, variable or expression can be temporarily converted to another type using the
cast operator. The syntax of the cast operator is:

(datatype)expression

where datatype is the type you want the expression to be converted to.

Operator Precedence and Associativity in C

Operator precedence dictates the order in which operators in an expression will be evaluated.
Associativity defines the order in which operators of the same precedence are evaluated in an
expression. Associativity can be either from left to right or right to left. Operator precedence and
associativity in C is shown in this table:

Operator Description Associativity
) Parentheses or function call
[] Brackets or array subscript _
; Dot or Member selection operator left to right
- Arrow operator
++ -- Postfix increment/decrement
++ -- Prefix increment/decrement
+ - Unary plus and minus
I o not operator and bitwise complement .
(type) type cast right to left
* Indirection or dereference operator
B Address of operator
sizeof Determine size in bytes

Operator Description Associativity
* f % Multiplication, division and modulus left to right
+ - Addition and subtraction left to right
<< == Bitwise left shift and right shift left to nght
< L= relational less than/less than equal to .
= == relational greater than/greater than or left to right
equal to
== I= Relational equal to and not equal to left to right
& Bitwise AND left to right
~ Bitwise exclusive OR left to right
| Bitwise inclusive OR left to right
Bl Logical AND left to right
11 Logical OR left to right
?: Ternary operator right to left
= Assignment operator right to left
= = Addition/subtraction assignment
= = mMultiplication/division assignment
Yo= &= Modulus and bitwise assignment
= = Bitwise exclusive/inclusive OR assignment
<L= =

Comma operator

left to right

Exercise 7

Complete the following code so that it produces the expected output shown below.

#include <stdio.h>

int main ()
{
char y char, x char = 126;
unsigned char y uchar, x uchar = 126;
int y int, x int = 126;
float y float, x float = 126;

// Multiply the variables

// x_char, x uchar, x int and x float
// by 4 and assign the answers to

// y char, y uchar, y int and y float.

printf ("126x4\n\n") ;

printf ("char: $d\n",y char);
printf ("int: $d\n",y int);

(
(
printf ("u char: %u\n",y uchar);
(
printf("float: %$6.2f\n",y float);

// Divide the variables

// x_char, x uchar, x int and x float
// by 4 and assign the answers to

// y_char, y uchar, y int and y float.

printf ("\n\nl26/4\n\n");

printf ("char: $d\n",y char);
printf ("int: $d\n",y int);

(
(
printf ("u char: %u\n",y uchar);
(
printf("float: $5.2f\n",y float);

return O;

Expected Output

Control Statements in C

Control Statements

Control statements are used to alter the flow of the program and are used to specify the order in which
statements can be executed. They are commonly used to define how control is transferred from one
part of the program to another.

The C language has these control statements:
1. if..else
2. while loop
3. do... while loop
4. forloop

5. switch

The if Statement

The if statement is used to test a condition and take one of the two possible actions. The syntax of
the if statement is shown here:

if (condition)
{

statement 1;

statement n;

where condition can be any constant, variable, expression, relational expression, logical expression
and so on. Just remember that in C, any non-zero value is considered to be a logical true while 9 is
considered as a logical false.

The statements inside the if block are executed only when the condition is true. If it is false then
statements inside if the block are skipped. The braces ({ }) are always required when you want to
execute more than one statement when the condition is true. Also, note that the statements inside the
if block are slightly indented. This is done to improve readability, indentation is not syntactically
required.

If you only want to execute one statement when the condition is true then the braces can be omitted.

The else Statement

The else clause allows an alternative path to be added to the i £ condition. Statements in the else
block are executed only when the i £ condition is false.

if (condition)

{

statementl;
statement?2;

}

else

{
statement3;
statementid;

The else if Statement

The else if statement extends the basic if else statement and allows a series of tests to be
performed.

if (conditionl)

{

statementl;

}

else if (condition?2)

{

statement?2;

else
{

statement3;

Each condition is checked one by one. As soon as a condition is found to be true then statements
corresponding to that block are executed. The conditions and statements in the rest of the 1 £ else
statement are skipped and program control comes out of the 1£ else statement. If none of the
conditions are true then the statements in the else block are executed.

The while Loop

Loops are used to execute statements or a block of statements repeatedly. The syntax of the while loop
is shown here:

while (condition)
{
statementl;
statement2;

If condition istrue, the statements in the while block are executed. After executing these
statements, the condition is checked again, if it is still true then the statements in the while block are
executed again. This process keeps repeating until condition becomes false. Therefore, you must
always include a statement, inside the while block, which alters the value of the condition so thatit
ultimately becomes false at some point. Each execution of the loop is known as an iteration.

Example

#include <stdio.h>

int main ()

{

int num, rem;
num = 1;

// keep looping while num is not equal to zero
while(num != 0)
{
printf ("Enter a number (0 to quit): ");
scanf ("%d", &num) ;

// 1f the number entered is not zero
// print whether it is odd or even

rem = num%2;
if (num !'= 0)
{
if (rem)
{
printf ("remainder = %d, %d is an odd number\n\n", rem,num) ;
}
else

{

printf ("remainder %d, %$d is an even number\n\n", rem, num) ;

}

}

printf ("Thanks for playing\n\n");
return 0O;

Expected Output

Enter a number (0 to quit): 2
remainder = 0, 2 is an even number

Enter a number (0 to quit): 5
remainder = 1, 5 is an odd number

Enter a number (0 to quit): -5
remainder = -1, -5 is an odd number

Enter a number (0 to quit): O
Thanks for playing

The do while Loop

The syntax of ado while loop is shown here:

do{
statementl;
statement2;
}while (condition) ;

Inado while loop, the statements in the body are executed first, then the condition is checked. If
the condition is true then the statements in the block are executed again. This process keeps repeating
until the condition becomes false. Notice that, unlike the while loop, a do while statement needs a
semicolon (;) after the condition.

The do while loop differs significantly from the while loop because inado while loop the
statements in the block are executed at least once even if the condition is false.

https://overiq.com/c-programming-101/the-while-loop-in-c/

The for Loop

The syntax of the for loop is shown here:

for (expressionl; expression?; expression3)

{

statementl;
statement?2;

Where expressionl is the initialization expression, expression?2 is the test expression or
condition, and expression3 is the update expression. First, the initialization expression
(expressionl)is executed to initialize loop variables. This expression is executed only once when
the loop starts. Then the condition (expression?2) is checked. If it is true, the body of the loop is
executed. After executing the loop body, the program control is transferred to the update expression
(expression3). This expression modifies the loop variables. Then the condition (expression?2)is
checked again. If the condition is still true, the body of the loop is executed once more. This process
continues until expression?2 becomes false.

Example

This code uses a for loop to find the sum of the numbers between 1 and 100.

int main ()

{
int i; // loop variable
int sum = 0; // variable to accumulate sum

for(i = 1; i <= 100; i++)
{
sum += 1i;

}

printf ("Sum = %d\n", sum);
return O;

Expected Output

Sum = 5050

break and continue

Two keywords that are very important to looping are break and continue. The break command
will exit the most immediately surrounding loop regardless of what the conditions of the loop are. The
break keyword is useful if we want to exit a loop under special circumstances.

continue is another keyword that controls the flow of loops. If you are executing a loop and hit a
continue statement, the loop will stop its current iteration, update itself (in the case of £or loops)
and begin to execute again from the top. Essentially, the continue statement is saying "this iteration
of the loop is done, let's continue with the loop without executing whatever code comes after me."

The switch Statement

The switch statement is a multi-directional statement used to handle decisions. It works almost
exactly like the if£ else statement. The difference is that the switch statement produces a more
readable code. The syntax of a switch statement is shown here:

switch (expression)

{
case constantl:
statementl;

case constant?2:
statement?2;

default:
statement3;

The expression in the switch statement can be any valid expression which yields an integer value. It
can also be a character constant but it can’t be a floating point or a string. The constants following the
case keywords must be of type integer or character. It can also be an expression which yields an
integer value. Each case statement must have only one constant and all case constants must be
unique. After each case constant, you can have any number of statements or no statement at all. If
there are multiple statements, you don’t need to enclose them with braces ({ }).

First, the expression following the switch is evaluated, then the value of this expression is compared
against every case one by one. If the value of the expression matches with any case constant then

https://overiq.com/c-programming-101/if-else-statements-in-c/

the statements under that case are executed. If the value of the expression does not match any case
constants then the statements under the default keyword are executed. The default statement
is optional. If it is omitted and no case matches then no action takes place.

Example

Notice the use of the break statements in the following example. If we left the break statements
out, when a match is found, all statements under that case statement are executed. The important
thing to note is that statements under any following case statements and the default statement
will also be executed. This is known as falling through cases and this is how the switch statement
works by default. break statements are required under all cases if you don’t want a switch
statement to fall through cases.

int main ()

{

int i, sum;

printf ("Enter a number: ");
scanf ("%d", &i);

switch (i)
{
case 1:
printf ("Number is one\n");
break;
case 2:
printf ("Number is two\n");
break;
default:
printf ("something else\n");

}

return 0;

Expected Output

First run:

Enter a number: 3

Number 1s three

Second run:

Enter a number: 11

something else

Exercise 8

Complete the following code so that it produces the expected output shown below.

int main ()

{

int i; // loop variable
int sum = 0; // variable to accumulate sum
int mean = 0; // variable to store mean value

// Use a for loop to calculate the
// mean of the numbers between
// 50 and 150 inclusive.

printf ("mean = %d\n",mean) ;

return O;

Expected Output

Functions

What is a Function?

A function is a collection of C statements to do something specific. A C program consists of one or
more functions. Every program must have a function called main ().

The advantages of using functions include:
1. Alarge problem can be divided into subproblems and then solved by using functions.

2. The functions are reusable. Once you have created a function you can call it anywhere in the
program without copying and pasting entire bocks of code.

3. The program becomes more maintainable. If you want to modify the program sometime later,
you only need to update your code in one place.

You can either use the built-in C library functions or you can create your own functions. To create your
own function you need to know about three things:

1. the function definition
2. the function call

3. the function declaration

The Function Definition

The function definition is the the actual code of the function. A function consists of two parts: the
function header and the function body. Here is the general syntax of a function:

return type function name (typel argumentl, type2 argument2, ...)

{

local wvariables;

statementl;
statement?2;

return (expression) ;
The first line of the function is known as the function header. It consists of return_ type,

function name and function arguments. return_type indicates the type of the value that the
function returns e.g. int, £loat etc. return_ type is optional, if it is omitted then the return type

is assumed to be int by default. A function can either return one value or no value at all, if a function
doesn’t return any value, then the keyword void is used in place of return type.

function name is the name of the function. It can be any valid C identifier. After the name of the
function, we have the arguments declaration inside parentheses. Each declaration consists of the type
and name of the argument. A function can have any number of arguments or even no arguments at all.
If the function has no arguments then the parentheses are left empty or sometimes the keyword void
is used to represent a function which accepts no arguments.

The body of the function is a block of statements which consists of any valid C statements followed by
an optional return statement. The variables declared inside the function are called local variables
because they are local to the function. This means you can’t access the variables declared inside one
function from another function. The return statement is used when a function needs to return
something to its caller. The return statement is optional. If a function doesn’t return any value then
it's return_type must be void, similarly if a function returns an int value its return type
must be int.

You can write function definitions anywhere in the program, but usually, they are placed after the
main () function.

Example

Here is an example function definition:

int product (int numl, int num?2)

{

int result;
result = numl * num?2;

return (result) ;

This function accepts two arguments and returns an integer value. The variable result is declared
inside a function, so it is a local variable and only available inside the function. The return statement
returns the product of num1 and num? to its caller. Another important point to note is that num1 and
num? are also local variables, which means we can’t access them outside the function product ().

The Function Call

After the function is defined the next step is to use the function. To use the function you must call it. To
call a function you must write its name followed by arguments, separated by a comma, inside the
parentheses. For example, here is how we can call the product () function we just created:

product (12,10) ;

Here we are passing two arguments, 12 and 10, to the function product (). The values 12 and 10
will be assigned to variables numl and num?2 respectively.

If a function returns a value then it can be used inside any expression like an operand. These
statements show examples of using a function call as an expression:

a = product(34,89) + 100;
printf ("product is = %d",product(a,b));
The Function Declaration

The calling function needs some information about the called function. Generally function definitions
come dfter themain () function. In this case, a function declaration is needed. A function declaration
consists of the function header with a semicolon (;) at the end. Here is the function declaration for the
function product () :

int product (int x, int vy);

The names of arguments in a function declaration are optional but the return type and argument types
must be the same as in the function definition. When the function definition comes before the calling
function, a function declaration is not needed.

Local, Global and Static Variables

This table describes the different properties of local, static and global variables:

Type Declared Scope Retains Value
local inside function inside declaring function no

static inside function inside declaring function yes
global | notinside any function everywhere yes

Variables which are declared inside a function are called local variables. They are only available inside
the function in which they are declared. A static variable is able to retain its value between different
function calls. A static variable is only initialized once. If it is not initialized, it is automatically initialized
to 0. Variables declared outside any function are called global variables. They are not limited to any
function. Any function can access and modify global variables. Global variables are automatically
initialized to 0 at the time of declaration. Global variables are generally written before the main ()
function.

Example

This example shows how to declare local, global and static variables:

void func 1(); // function declaration for func 1
int a = 1; // declaring and initializing a global variable

int main ()
{

printf ("from inside main () global a $d\n\n", a++);

(=
func 1(); // function call for func 1
printf ("from inside main() global a = %d\n\n", a++);
func 1();// function call for func 1
printf ("from inside main() global a = %d\n\n", a++);
func_1();// function call for func 1
return 0;
}
// function definition for func 1
void func 1()
{
int b = 10; // declaring and initializing a local variable
static int ¢ = 100; // declaring and initializing a static variable
printf ("from inside func 1() global a = $d\n", a++);
printf ("from inside func 1() local b = %d\n", b++);
printf ("from inside func 1() static c = %d\n\n", c++);

Expected Output

inside main() global a =
inside func 1() global a
inside func 1() local b 10

inside func 1() static c = 100

inside main() global a =

inside func 1() global a
inside func _1() local b =
inside func 1() static c

inside main() global a =

inside func 1() global a o
inside func 1() local b = 10
inside func 1() static c = 102

Exercise 9

Complete the following code so that it produces the expected output shown below.

// Declare a function called my sum

// to find the sum of two integers.

// It should accept 2 integer arguments
// and return an integer answer.

int main ()

{

int x, a, b;

printf ("Enter the value for a: ");
scanf ("3d", &a);

printf ("Enter the value for b: ");
scanf ("sd", &b);

// Call the function my sum

// to add a and b and assign the
// answer to Xx.

printf ("\n\nThe sum of a and b = %d \n\n",x);

return 0;

}

// Define the function my sum.

Expected Output

Enter the value for a: 10
Enter the value for b: 12

The sum of a and b = 22

Pointers

What is a Pointer?

A pointer is a variable used to store a memory address. Memory in a computer is made up of bytes
arranged in a sequential manner. Each byte has a number associated with it which is called the address
of the byte. The address values range from 0 to one less than the size of memory. For example, in
64MB of RAM, there are 64 x 22° = 67,108,864 bytes. Therefore the addresses of these bytes will range
from 0 to 67,108,863.

A variable of type int will occupy 4 bytes of memory. The compiler reserves 4 consecutive bytes from
memory to store an integer value. The address of the first byte of these 4 allocated bytes is known as
the address of the variable.

The Address Operator

To find the address of a variable, C provides an operator called the address operator (&). To find out
the address of a variable, we need to place & in front of it. This program demonstrates how to use the
address operator:

int main ()

{
int i = 12;

printf ("Address of
printf ("Value of i

I ==

return 0;

Expected Output

Address of 1 6356748

Value of i

Declaring Pointer Variables

Just like any other variable you need to first declare a pointer variable before you can use it. Here is the
syntax for declaring a pointer variable:

data type *pointer name;

Where data type is the type of the pointer and pointer name is the name of the variable, which
can be any valid C identifier. Here are some examples for declaring pointers:

int *ip;
float *fp;

int *ip means that ip is a pointer variable that can only store an address of a variable of type int.
Similarly, the pointer variable fp can only store the address of a variable of type float.

From now on, for convenience, we will refer to a pointer variable as a pointer.

Assigning an Address to a Pointer

After declaring a pointer the next step is to assign some valid memory address to it. You should never
use a pointer variable without assigning a valid memory address to it, because, just after declaration it
contains a random value and it may be pointing to anywhere in the memory. The use of an unassigned
pointer may give an unpredictable result. It may even cause the program to crash. This example shows
how to assign an address to a pointer:

int *ip, i = 10;
float *fp, £ = 12.2;

ip = &i;
fp = &f;

Here ip is declared as a pointer to int, so it can only point to the memory address of an int
variable. Similarly, £p can only point to the address of a £1oat variable. In the last two statements,
we have assigned the address of 1 and f to ip and fp respectively. It is important to note that if you
assign the address of a £1loat variable to a pointer to int, the compiler will not show you an error
but the code may not produce the desired result.

Dereferencing a Pointer

Dereferencing a pointer simply means accessing data at the address stored in the pointer. Up until
now, we have been using the name of the variable to access data inside it, but we can also access
variable data indirectly using pointers. To do this a new operator called the dereferencing operator (*)
is used. By placing the dereferencing operator before a pointer we can access the value of the variable
whose address is stored in the pointer. Here is an example that shows the use of the dereferencing
operator:

int main ()

int 1 = 12;
int *ip;

ip = &i;

printf ("Address of i = %Su\n", ip);
printf ("Value of i $d\n", *ip);

I+

return O;

Expected Output

Address of i 6356748

Value of 1 = 12

The dereferencing operator can be read as “the value at the address”. For example, * ip can be read
as “the value at address ip”.

Function Call by Reference

In this function calling method addresses of the actual arguments are copied and then assigned to the
corresponding arguments in the function header. Now the calling and called functions are both using

pointers that point to the same data. As a result, any changes made by the called function also affect

the data values in the calling function. This program demonstrates call by reference:

void change values (int *xp, int *yp);

int main ()

{
int x = 10, y = 20;

printf ("Initial value of x in main() = %d\n", x);
printf ("Initial value of y in main() = %d\n\n", y);

change values (&x, &y);

printf ("Final value of x in main() = %d\n", x);
printf ("Final value of y in main() = %d\n\n", y);
return 0;

}

void change values (int *xp, int *yp)

{
*xp +t= 1;
*yp += 1;
printf ("Value of x in function = %d\n", *xp);

printf ("Value of y in function = %d\n\n", *yp);

Expected Output

Initial value
Initial wvalue

Value of x in
Value of y in

of x in main{()
of v in main ()

function = 11
function 21

Final value of x in main{()
Final value of y in main|{()

In this code we are passing the addresses of integer variables to a function, so the arguments in the
function header must be declared as a pointer to int which is written as (int *). The expression
*xp += 1 meansadd 1l to the value at address xp.

When the function change values () ends, control passes backtomain () and the print£ ()
statements print the new values of the integer variables x and y.

Exercise 10

Complete the following code so that it produces the expected output shown below.

//
//
//
//

Declare a function called my sum

to find the sum of two integers.

It should accept 2 pointer to int arguments
and return an integer answer.

int main ()

{

}
//

int x, a, b;

printf ("Enter the value for a: ");
scanf ("3d", &a);

printf ("Enter the value for b: ");
scanf ("sd", &b);

// Call the function my sum

// to add a and b and assign the
// answer to Xx.

printf ("\n\nThe sum of a and b = %d \n\n",x);

return 0;

Define the function my sum.

Expected Output

Enter the value for a: 10
Enter the value for b: 12

The sum of a and b = 22

Arrays and Structures

What is an Array?

An array is a collection of one or more values of the same type. Each value is called an element of the
array. The elements of the array share the same variable name but each element has its own unique
index number. An array can be of any type, but, if an array is declared as a particular type, then all its
elements must be of the same type. This is the syntax for declaring a one-dimensional array:

datatype array name[size];

where datatype denotes the type of the elements in the array, array name is the name of the
array and must be a valid identifier, and size is the number of elements the array can hold. Variables
and symbolic constants can be used to specify the size of an array when it is declared.

For example, to store the height of 100 students, we have to declare an array of size 100. This is the
syntax for declaring an array called height which is of type float and has 100 elements:

float height[100];

In C, array indices start at 0, so height [0] is the first element, height [1] is the second element
and so on. Note that the last element of the array will be height [99].

Accessing Elements of an Array

An array index can be any expression that yields an integer value. For example:

int my arr[5];
int 1 = 0, jJ = 2;

my arr([i]; // 1lst element
my arr([i+1]; // 2nd element
my arr[i+j]; // 3rd element

The first valid index (0) is known as the lower bound, while the last valid index is known as the
upper bound. Inthe arraymy arr, the last elementismy arr[4].Inthese example lines of code,
indexes 5, 10 and -1 are not valid but the C compiler will not give you an error message. Instead some
random value will be printed. The C language doesn’t check bounds of the array. It is the responsibility
of the programmer to check array bounds whenever required.

printf ("%d", my arr[5]); // wrong
printf ("%d", my arr([10]); // wrong
printf ("%d", my arr[-1]); // wrong

Processing 1-D Arrays

This program uses £or loops to take input and print elements of a 1-D array:

int main ()

{

int arr[5], 1i;

for(i = 0; 1 < 5; i++)

{
printf ("Enter af%d]: ", 1);
scanf ("%d", &arr[i]);

}

printf ("\nPrinting elements of the array:

for(i = 0; 1 < 5; 1i++)
{
printf ("3d ", arr[i]);

}

return O0;

Expected Output

Enter [0
Enter [1]:
Enter a[2]: 30
Enter [3]:
Enter [4

10
20

40
50

Printing elements of the array:

10 20 30 40 50

\n\n") ;

In this code, we have declared an array of 5 integers and variable i of type int. Then a for loop is

used to enter five elements into an array. In the scanf () statement we have used the address

operator (&) on the ith element of the array: arr [i]. The second for loop prints the values of all

the elements of the array, one by one, separated by a space.

Initializing an Array

When an array is declared inside a function the elements of the array have random values. If an array is
global or static, then its elements are automatically initialized to 0. This is the syntax for explicitly
initializing elements of an array at the time of declaration:

datatype array name[size] = {vall, val2, val3, , valN};

wherevall, val2 valN are constants known as initializers. Each value is separated by a
comma and there must be a semi-colon after the closing curly brace. Here are some examples:

float temp([5] = {12.3, 4.1, 3.8, 9.5, 4.5}; // an array of 5 floats
int arr[] = {11, 22, 33, 44, 55, 66, 77, 88, 99}; // an array of 9 ints

When initializing a 1-D array it is optional to specify the size of the array. If the number of initializers is
less than the specified size, the remaining elements of the array are assigned a value of 0. If the
number of initializers is greater than the size of the array, the compiler will report an error.

Pointers and 1-D Arrays

In C, the elements of an array are stored in contiguous memory locations. For example: if we have this
array declaration:

int my arr([5] = {1, 2, 3, 4, 5}

Then, the elements of my arr are stored in memory like this:

5000 5004 5008 5012 5016

1 2 3 4 5

my_arr[0] my_arr[1] my_arr[2] my_arr[3] my_arr[4]

Here the first element is at address 5000. Since each integer occupies 4 bytes the next element is at
address 5004 and so on.

In C, pointers and arrays are very closely related. Behind the scenes, the compiler accesses elements of
the array using pointer notation rather than index notation because accessing elements using a pointer

is very efficient when compared to index notation. The most important thing to remember about
arrays in Cis that:

The name of an array is a pointer to the address of the first element of the array.

Using Pointers to Access Elements of an Array

You can easily access the values and addresses of the elements in an array using pointer arithmetic.
Supposemy arr is an array of 5 integers initialized using this statement:

int my arr[5] = {11, 22, 33, 44, 55};

We have just learned that my arrisapointerto intor (int *).So, in this example, my arr
points to the address of the first element of the array, my arr+1 points to the address of the second
element, and so on. This means that:

my arr isthesameas &my arr[0]
my arr + 1 isthesameas &my arr[1l]
and so on

It also means that:

*my arr isthesameas my arr([0]
*(my arr + 1) isthesameas my arr[1l]
and so on

Passing a 1-D Array to a Function

This example shows how to pass a one-dimensional array to a function in C:

void change oned(int *my array);

int main ()

{
int one dim[] = {1,4,9,16,23}, i;

printf ("Original array: \n\n");
for(i = 0; 1 < 5; i++)
{

printf("3d ", one dim[i]);

}

change oned(one dim) ;

printf ("\n\nModified array: \n\n");
for(i = 0; 1 < 5; i++)
{

printf ("%d ", one dim[i]);

}

return 0;

}

void change oned(int *my array)

{

int 1i;
for(i = 0; 1 < 5; i++4)

{

my array[i] += 5;

Expected Output

Original array:

1 4 9 16 23
Modified array:

6 9 14 21 28

Since one dim is a pointer to the first element of the array, we can pass one dim to the function
change oned () without using the address operator, &. We are actually assigning the address of the
first elementin one dimto the pointermy array, whichis of type (int *). This means that we
are using call by reference instead of call by value. So now both pointers, one dimandmy array,
point to the same array. Inside the function, we are using a £or loop to increment every element of
the array by 5. Since one_dimandmy array point to the same data, all the changes made here will
affect the original array. Remember that you don’t need to use the dereferencing operator when using
array names.

The argument in the function header could also have been written as:

void change oned(int my arrayl[5])
or

void change oned(int my arrayl[])

Exercise 11

Complete the following code so that it produces the expected output shown below.

// Declare a function called my array sum

// to find the sum of an array of 5 integers.
// It should accept an array of 5 integers

// as an argument and return an integer answer.

int main ()

{

int 1, x;
// Declare an array called one d that can hold 5 integers.

for(i = 0; 1 < 5; i++)

{
printf ("Enter the value for element %d of my arr: ",1i);
scanf ("5d", &one df[i]);

}

// Call the function my array sum

// to find the sum of the elements in my arr
// and assign the answer to x.

printf ("\n\nThe sum of the elements of the array = %d \n\n",x);

return 0;

}

// Define the function my array sum.

Expected Output

2-D Arrays
This is the syntax for declaring a 2-D array:

datatype array name [ROW] [COL];

Note that we just use two indices instead of one. The total number of elements in a 2-D array is
ROW*COL.

Consider this example:

int arr[2][3];

This array can store 2x3 = 6 elements. You can visualize this 2-D array as a matrix of 2 rows and 3
columns using this diagram:

0 arr[0][0] | arr[0][1] | 2rr[0][2]| Row O

int arr[2][3] = 1 |arr2101 |arri2ir2] |arrfli2]) Row 1

0192
T 10D
Z 100

The individual elements of a 2-D array can be accessed by using two indices instead of one. The first

index denotes the row number and the second denotes the column number. Both row and column
indices start at 0.

Processing Elements of a 2-D Array

To process elements of a 2-D array, we can use two nested loops. In this example, the outer £or loop
loops through all the rows and the inner £oxr loop loops through all the columns:

#include<stdio.h>

#define ROW 2
#define COL 2

int main ()

{
int arr[ROW] [COL], i, Jj;

for(i = 0; i < ROW; i++)
{
for(j = 0; J < COL; Jj++)
{
printf ("Enter arr

[[(3d1: ", i, J)7
scanf ("%d", &arr[i ;

$d]
11031) 7
}

printf ("\nEntered 2-D array is: \n\n");

for(i = 0; 1 < ROW; i++)

{ for(j = 0; j < COL; J++)
{ printf ("%3d ", arr[i][j])
;rintf("\n");

}

return 0;

Expected Output

Enter
Enter
Enter
Enter

Initializing a 2-D Array

This example shows how to initialize a 2-D array:

int temp[2][3] = {
{1/ 2/ 3}/ // row O
{11, 22, 33} // row 1
b

This output shows the initial value of each element :

Pointer to an Array

We have seen that the name of an array is actually a point to the first element in the array. In C, we
can also create a pointer that can point to the whole array instead of only one element of the array.
This is known as a pointer to an array. This is the syntax for declaring a point to an array:

datatype (*array name) [size];

For example, here is how you can declare a pointer named array p that points to an array of 10
integers.

int (*array p) [10]; \\ pointer to an array

In this case, the type of array pis “pointer to an array of 10 integers”. Note that the parentheses are
necessary. For example, this declaration:

int *array p[10]; \\ wrong: array of pointers

means that array p isan array of 10 elements where each element is of type “pointer to int” or
(int *).

Passing a 2-D Array to a Function

This example shows how to pass a 2-D array to a function in C:

#include<stdio.h>
void change twod(int (*my array2) [3]);

int main ()
{
int 1i,73;
int two dims[2][3] = {
{10,20,30},
{45,55, 65}
i

printf ("Original array: \n\n");

for(i = 0; i < 2; i++)

{ for(j = 0; J < 3; j++)
{ printf ("%3d ", two dims[i][]]);
;rintf("\n");

}

change twod(two_dims);

printf ("\nModified array: \n\n");

for(i = 0; i < 2; i++)

{ for(j = 0; j < 3; j++)
{ printf ("%3d ", two dims[i][]]);
;rintf("\n");

}

return 0;

void change twod(int (*my array2) [3])
{

int i, 3J;

for(i = 0; i < 2; i++)

{ for(j = 0; J < 3; j++)
{ my array2[i][]j] += 5;
}

}
Expected Output

Original array:

10 20 30
45 55 65

Modified array:

15 25 35
50 60 70

In C, 2-D arrays are stored in row-major order i.e. the first row is stored, then the second row is stored
next to it, and so on. This means that a 2-D array is actually a 1-D array in which each element is also a
1-D array. We know that the name of an array points to the first element of the array. We also know
that, in a 2-D array, the first element is an array. Therefore, the name of a 2-D array is actually a pointer
toan array.

In this example, the name of the 2-D array, two dims, is a pointer to an array of 3 integers. The
function change twod () is called with the name of the 2D array, two dims, as its argument. So
two dims is assigned to the pointermy array?2 in the function call. Now both two dims and

my array2 point to the same 2-D array and, as a result, all the changes made inside the function will
affect the original array.

The argument in the function header could also have been written as:
void change twod(int my array2([2][3])
or

void change twod(int my array2[][3])

Exercise 12

Complete the following code so that it produces the expected output shown below.

#include<stdio.h>

// Declare a function called my 2d array sum
// to find the sum of a 2x2 array of integers.
// It should accept a 2x2 array of integers

// as an argument and return an integer.

int main ()

{

se A, I, Kg
// Declare a 2x2 array of integers called two d.

for(i = 0; i < 2; i++)
{ for(j = 0; j < 2; j++)
{ printf ("Enter two d[%d]
scanf ("$d", &two d[i]l[j]);
}

// Call the function my 2d array sum
// to find the sum of the elements in two d
// and assign the answer to x.

printf ("\n\nThe sum of the elements of the array = %d \n\n",x);

return O;

}

// Define the function my 2d array sum.

Expected Output

The sum of the elements of the array = 10

Structures

In C, structures can be used to create new data types. A structure allows related data, of different
types, to be group together under a single name. Each data element of a structure is referred to as a
member of the structure. The syntax for declaring a structure is:

struct tagname

{
datatype memberl;

datatype member2;

datatype memberN;
}i

where tagname is the name of the entire type of structure and memberl, member2, .. memberN
are the members within the structure.

This is the syntax to create an instance of a structure:
struct tagname struct name;
This is the syntax to access a member of the structure:

struct name.member name

Structure Example

This program shows how to declare a structure type, declare an instance of the structure and access
members of the structure.

struct mark record

{

int

int id;
char *first name;
char *last name;
float mark;
// declare a structure type called mark record

main ()

struct mark record studentl; // declare the variable studentl
// of type mark record

// assign values to the members of studentl
studentl.id = 7803017;

studentl.first name = "Mark";
studentl.last name = "Pickering";
studentl.mark = 85.7;

printf ("5d", studentl.id);
printf ("\t%s\t%s", studentl.first name, studentl.last name);

printf ("\t%5.2f\n", studentl.mark);

return O;

Expected Output

7803017 Mark Pickering 85.70

Array of Structures

Declaring an array of structure is the same as declaring an array of any other data type. Since an array
is a collection of elements of the same type, in an array of structures, each element of an array is of the
structure type. This example shows how to declare an array of structures:

struct mark record student[50];

Subscript notation ([]) is used to access individual elements of the array and the dot operator (.) is
used to access the members of each element as usual. This example shows how to print the
first nameand last name members of all the elements of the array using a £ox loop:

for(i = 0; i < 50; i++)
{

printf ("\t%s\t%s \n", student[i].first name, student[i].last name);

Pointer to a Structure

Just as we can have a pointer that points to the address of another variable of any data type, we can
also have a pointer that can point to the address of a structure. This example shows how we can
declare and initialize a pointer to a structure:

struct mark record student data;
struct mark record *student = &student data;

Note that a structure instance must first be declared when using this method so that the pointer can be
initialised to point to its address.

This statement shows how to use the dereferencing operator (*) and dot operator (.) to access the
structure members when using a pointer to the structure:

(*student) .id = 7803017;

This method of accessing members of the structure, when using a pointer, is slightly confusing and not
easy to read. So, C provides another way to access members using the arrow operator (—>).

This statement shows the alternate, and preferred, arrow operator method for accessing a structure
member when using a pointer:

student->id = 7803017;

Pointer to an Array of Structures

This example shows how we can declare and initialize a pointer to an array of structures:

struct mark record student data[50];
struct mark record (*student) [50] = &student data;

Again, note that an instance of the array of structures must first be declared when using this method so
that the pointer can be initialised to point to its address.

This statement shows how to use the dereferencing operator (*) and dot operator (.) to access a
member of the ith element of an array of structures when using a pointer to the array:

(*student) [i].1d = 7803017;

Exercise 13

Complete the following code so that it produces the expected output shown below.

// Declare a structure type called

// height record with two members:

// an array called first name with 50 elements of type char
// a float called height in cm

int main ()

{

// Declare an array of structures of type
// height record called height data.
// The array should have 2 elements.

// Declare a pointer to an array of structures
// of type height record with 2 elements.

// The pointer should be called student and be
// initialized with the address of height data.

// Allow the user to enter the first name
// and height for each element of the array.

// Print out the first name and height
// for each element of the array.

return O;

Expected Output

Student 1:

Enter first name: Mark

Enter height in cm: 178

Student 2:
Enter first name: Aidan
Enter height in cm: 185

Mark 178.0
Aidan 185.0

	C Language Basics
	Types of Programming Languages
	Types of Code for Programming in a HLL
	HLL Program Execution Steps
	Basic Elements of a C Program
	Exercise 1
	Keywords
	Identifiers
	Data Types
	Typical Range and Stored Size of Integer Data Types on a 64-bit Computer
	Bit Interpretation and Stored Size of Float Data Types
	Examples
	Exercise 2
	Constants
	Numeric Constants
	Integer Constants
	Floating Point or Real Constants – Fractional Form
	Floating Point or Real Constants – Exponential Form
	ASCII
	Character Constants
	String Constants
	Symbolic Constants
	Variable Declarations
	Exercise 3
	Input and Output
	Format Specifications
	Printing Special Characters
	Outputting Data
	Example
	Reading Input from the Keyboard
	Example
	Exercise 4
	Formatting Integer Output
	Formatting Floating Point Output
	Exercise 5
	Storing Data in a File
	Opening a File
	File Modes
	The fscanf Function
	The fprintf Function
	Example
	Exercise 6
	Expressions and Operators in C
	Operators and Operands
	Arithmetic Operators
	Integer Arithmetic
	Floating Point Arithmetic
	Mixed Mode Arithmetic
	Relational Operators
	Logical Operators
	Conditional Operator
	Assignment Operator
	Compound Assignment Operator
	Increment and Decrement Operators in C
	Prefix and Postfix Increment/Decrement Operator
	Bitwise Operators
	Example
	sizeof Operator
	Implicit Type Conversion in C
	Type Conversion in Assignment
	Explicit Type Conversion
	Operator Precedence and Associativity in C
	Exercise 7
	Control Statements in C
	Control Statements
	The if Statement
	The else Statement
	The else if Statement
	The while Loop
	Example
	The do while Loop
	The for Loop
	Example
	break and continue
	The switch Statement
	Example
	Exercise 8
	Functions
	What is a Function?
	The Function Definition
	Example
	The Function Call
	The Function Declaration
	Local, Global and Static Variables
	Example
	Exercise 9
	Pointers
	What is a Pointer?
	The Address Operator
	Declaring Pointer Variables
	Assigning an Address to a Pointer
	Dereferencing a Pointer
	Function Call by Reference
	Exercise 10
	Arrays and Structures
	What is an Array?
	Accessing Elements of an Array
	Processing 1-D Arrays
	Initializing an Array
	Pointers and 1-D Arrays
	Using Pointers to Access Elements of an Array
	Passing a 1-D Array to a Function
	Exercise 11
	2-D Arrays
	Processing Elements of a 2-D Array
	Initializing a 2-D Array
	Pointer to an Array
	Passing a 2-D Array to a Function
	Exercise 12
	Structures
	Structure Example
	Array of Structures
	Pointer to a Structure
	Pointer to an Array of Structures
	Exercise 13

